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We present a method to study the Nernst effect and diamagnetism of an extreme type-II superconductor
dominated by phase fluctuations. We work directly with vortex variables and our method allows us to tune
vortex parameters �e.g., core energy and number of vortex species�. We find that diamagnetic response and
transverse thermoelectric conductivity ��xy� persist well above the Kosterlitz-Thouless transition temperature,
and become more pronounced as the vortex core energy is increased. However, they weaken as the number of
internal vortex states is increased. We find that �xy closely tracks the magnetization �−M /T� over a wide range
of parameters.
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A number of experimental observations in superfluidity
and superconductivity are best explained in terms of the sta-
tistical mechanics and dynamics of vortices. Examples in-
clude the Kosterlitz-Thouless �KT� transition in superfluid
films and the “flux-flow” contribution to electrical resistivity
in type-II superconductors. A natural extension of this para-
digm involves the use of thermoelectric and thermal trans-
port experiments as a probe of vortex dynamics. This is es-
pecially pressing given the Nernst effect experiments in the
cuprates.1 The Nernst effect is the appearance of a steady-
state electric field �Ey� when a system is placed in a perpen-
dicular thermal gradient ��xT� and magnetic field �Hz� under
open-circuit conditions. In the cuprate superconductors, a
large Nernst signal and diamagnetism persists well above Tc,
the superconducting transition temperature, and are espe-
cially enhanced in the underdoped regime of hole-doped ma-
terials.

To explain these results, it has been argued that vortices
are responsible for the large Nernst signal:1 as a vortex drifts
down the temperature gradient, it generates a transverse elec-
tric field. A vortex description above Tc is useful when Tc
marks the loss of macroscopic phase coherence, while the
amplitude of the order parameter remains large below a
higher “mean-field” temperature scale Tc

MF�Tc.
2 This idea is

most likely to hold true in the underdoped regime of the
hole-doped cuprates, where the reduced superfluid stiffness
enables phase fluctuations to suppress Tc below the mean-
field transition temperature. Prior to the experiments de-
scribed in Ref. 1, optical conductivity measurements3

showed that superconducting correlations persist above Tc at
short distance and time scales in BSCCO films. Recently,
current-voltage measurements in YBCO films have also re-
vealed a relatively wide zero-field regime where supercon-
ducting fluctuations are likely to persist.4 However, the dia-
magnetism and Nernst measurements1 have exposed a
greater fluctuation regime since the normal state contribu-
tions to these experiments are far smaller than in electrical
transport measurements. Over a range of fields, this “vortex-
liquid regime” Tc�T�Tc

MF �Ref. 5� can be intuitively un-

derstood in terms of a dilute fluid of vortices, but so far this
appealing picture6,7 has not lead to a complete understanding
of the Nernst effect.

There are special challenges involved in constructing a
vortex-based theory of thermoelectric transport that is con-
sistent with the basic principles of statistical mechanics. In
contrast to thermodynamics, and even electrical transport,
where a theory of vortices interacting via a long-range po-
tential can be used, a thermal transport calculation requires a
purely local formulation where no such long-range forces are
explicitly present. In this paper, we present such a local for-
mulation and use it to study thermoelectric transport directly
in the vortex language. An advantage of our method is that
vortex parameters, such as core energy or number of vortex
species, can be tuned independently of other properties, and
their impact on the Nernst signal and magnetization can be
systematically studied. Moreover, it is possible to use our
method to study the Coulomb gas efficiently even in the
high-density limit, where the number of pairwise Coulomb
interactions is large.

Previous theoretical work on the Nernst effect includes
the time-dependent Ginzburg-Landau theory,8,9 which in-
cludes fluctuations in the amplitude of the order parameter.
The Nernst effect near a quantum critical point has been
studied in Ref. 10. A heuristic treatment of the Nernst effect
in a vortex liquid has been presented in Refs. 11. In earlier
work, three of us have studied the Nernst effect in an XY
model,12 which should be relevant for the underdoped cu-
prates. Our present results approaching from the vortex
viewpoint are consistent with this work. Remarkably, we find
that the close quantitative connection between the Nernst
effect and diamagnetism observed previously holds in the
present study too, even when vortex properties are drastically
modified. The effect of vortex core energy on thermody-
namic properties was studied in Ref. 13.

Method: Consider a two-dimensional �2D� supercon-
ductor in the extreme type-II limit, in which the supercur-
rents are too feeble to modify the external field. We restrict
the order parameter to live on the sites n of a square lattice
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and assume that all fluctuations arise from the phase: �n�t�
= ��0�ei�n�t�. We map to the vortex representation by defining
a dual electric field e= �ei

x ,ei
y� on the bonds �i , i+ x̂� and

�i , i+ ŷ� of a dual lattice, orthogonal to the original lattice

bonds, via e=�� �	 ẑ, where �� is a lattice derivative. Here the
lattice spacing is taken to be the size of a vortex core. The
local field e is related to the local supercurrents via J=
s

0ẑ
	e, where 
s

0 is the bare superfluid density. Vortices may
live at the sites i of this dual lattice, and the integer vortex

charge ni satisfies Gauss’ law �� ·e=2�ni. We then obtain a
completely local Hamiltonian for the vortex fluid that retains
all phase and vortex degrees of freedom,

H =
1

4�
�

i�links
ei

2 + �c �
i�sites

ni
2, �1�

where �c is the vortex core energy and we use units where

s

0=1 /2�. The dual electric fields can be decomposed into
longitudinal and transverse components representing the vor-
tex and supercurrent fluctuations, respectively. When the
transverse electric fields are integrated out, the model re-
duces to the static 2D Coulomb gas. While the static Cou-
lomb gas model is adequate for studying the equilibrium
properties of a vortex fluid, we stress that one must include
both local supercurrents and vortices when dealing with ther-
mal transport so as to define a local energy density. The
interaction between the vortices is mediated by the supercur-
rents, and this maps simply to the interaction between the
charges being mediated by the dual electric field in our
model.

The model is given a Monte Carlo dynamics that captures
the effect of random thermal fluctuations. Two distinct types
of Monte Carlo moves, electric curl and vortex updates, cor-
responding to the longitudinal and transverse degrees of free-
dom, are introduced �Fig. 1�. During a curl update, a
plaquette is chosen at random and a random electric curl is

added to it. Such an update is purely transverse and is not
accompanied by vortex creation. During a charge update, a
lattice bond is chosen at random, and a vortex/antivortex pair
is added on the two sites connected to this bond. The electric
fluxes are updated locally near the charges to satisfy Gauss’
law. The result of such an update is either the creation of a
vortex/antivortex pair or the motion of a pre-existing vortex
to a neighboring site. We note that while such moves can
change the total number of vortices, the net vorticity does not
change in a system with periodic boundary conditions. Each
move is accepted with probability 1 / �1+exp��U /T��, where
�U is the change in energy associated with the move and T
is the local temperature at the center of the plaquette or bond
for that move. By varying the relative frequency of each type
of trial, we have control over Dph, the phase diffusivity, rela-
tive to the vortex diffusivity Dv. In what follows, we work in
the physically reasonable limit DphDv �in practice we set
Dph=25Dv�. After an attempt is made to update each bond
and plaquette, a unit of Monte Carlo time elapses. A related
method has been used in Ref. 14 to study charged polymers.

When a charge move is attempted, the simplest way to
satisfy Gauss’ law is to add an electric flux e=2�r̂ to the link
r̂ connecting the positive to the negative charge. However,
such single bond updates are rarely accepted, resulting in too
little vortex motion below a temperature scale T�� /2
s

0;
to avoid this artificial vortex pinning, we use an update that
spreads the electric flux over several bonds. A simple ex-
ample of such an update is shown in Fig. 1. The added flux is
made curl free, and the move we actually use involves a
patch of 12 plaquettes that is one plaquette larger in all di-
rections than indicated in Fig. 1. We have explicitly com-
puted the vortex mobility from the voltage autocorrelation
function and have seen its enhancement at lower tempera-
tures with the use of such updates. As the size of the patch
over which the updates are made is increased, the problems
associated with fictitious vortex pinning are eliminated.
However, when the charge updates are made over the entire
system, the curl updates are no longer necessary as the exci-
tations of the transverse component of the electric fields be-
come instantaneous, making the model unsuitable for study-
ing thermal transport. Therefore, the charge updates must be
made over a region whose size is larger than the lattice spac-
ing but much smaller than the entire system size. In our
simulations, the charge updates are made over a region of 12
plaquettes that is one plaquette larger in all directions than
indicated in Fig. 1. We have found that these moves elimi-
nate the artificial pinning of vortices and allow us to access
the dynamics down to TKT but are still sufficiently local to
permit the study of thermal transport.

Thermodynamics: We have studied the KT transition of
the neutral 2D Coulomb gas by tracking the dielectric re-
sponse function

�−1 = 1 −
���i

ei�2	
4�TL2 . �2�

At T=TKT, the dielectric response function satisfies the uni-
versal jump criterion15

+ _

FIG. 1. �Color online� Charge updates �left� and curl updates
�right� sample the longitudinal and transverse degrees of freedom,
respectively, of the dual electric field.
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�−1 = 
4TKT, T = TKT
−

0, T = TKT
+ � . �3�

Figure 2 shows the results of the helicity modulus calculation
using various system sizes and a core energy �c=0.125. We
use finite-size scaling16 to identify TKT=0.22; the naive free-
energy estimate is TKT

0 =0.25 in our units. In the remainder of
this paper, we cite all temperatures in units of TKT

0 .
Diamagnetism: When a magnetic field is applied, the re-

sulting imbalance of vorticity leads us to consider a plasma
of vortices in a static neutralizing background �charge den-
sity nb=−B /�0, where �0=2� is the flux quantum in our
units�. To study diamagnetism we permit vortices to enter
and leave the sample by employing cylindrical geometry
with open boundaries. Current flow near the boundaries is
measured, which arises due to a surface depletion of vorticity
that lowers the free energy relative to a perfectly neutral
system. Deep inside the cylinder, beyond some distance x0
from the edge, the supercurrents vanish in equilibrium. The
magnetization can be obtained by inverting the relation
J=�	M on a cylinder whose axis is along the x direction.
For physical clarity we present continuum formulas below;
these can be readily transcribed into the appropriate lattice
versions,

M = �
0

x0

dx�Jy�x,y�	 = 
s�
0

x0

dx�ex	 . �4�

Thus, M is directly proportional to the work function of the
dual Coulomb gas �energy cost of removing a vortex from
the bulk of the system�. Using Gauss’ law we can also obtain

M = 2�
s�
0

x0

dx x��n�x�	 − B/�0� . �5�

Thus, M is also the total edge polarization per unit length.
The polarization fields are nonzero only in the charge deple-
tion region near the cylinder’s edge.

Nernst effect: To determine the Nernst effect, we
again make use of cylindrical geometry and apply a tempera-
ture gradient along the cylinder axis. We compute the trans-
verse thermoelectric conductivity �xy defined via �Jy	=
−�xy�−�xT� and is closely related to the Nernst signal:
�xy /�xx. Here, �xx is the electrical conductivity and we have
made the approximation of vanishing Hall angle. The expres-
sions for the transport coefficients are easily found in the
dual vortex representation using the relations

J = 
s
0ẑ 	 e ,

E = �0ẑ 	 j , �6�

where upper �lower� case quantities refer to the original
�dual� representation and j is the vortex current. The first
equation above is the definition of the dual electric field, and
the second is the Josephson relation. We observe that in the
superconductor, the time-reversal operation, which maps
J→−J, translates to the particle-hole transformation,
namely, e→−e in the dual vortex representation and vise
versa. The quantity �xy is obtained by measuring �ex	 and
using the relation �xy =
s

0�ex	 /�xT. While �xy is an off-
diagonal transport coefficient when written in terms of elec-
trical currents, it is a diagonal response function in the vor-
tex representation: it is simply the vortex thermopower. We
have verified that the net vortex motion vanishes once the
steady state in the thermal gradient is reached, as is required
in a thermopower measurement. The quantity �xy has the
advantage that, unlike the Nernst signal, it does not have any
explicit dependence on Monte Carlo time tMC, as can be seen
from the Kubo formula for �xy and dimensional analysis.12

Also, in our model, the diagonal thermoelectric coefficient
�xx= �Jx	 / �−�xT�= �ey	 / ��xT� maps onto a transverse ther-
mopower of vortices. It vanishes by symmetry in our model
since the vortices can travel perpendicular to the thermal
gradient only if a Magnus force is present. However, a Mag-
nus force can be nonzero only if particle-hole symmetry is
broken in the superconductor �i.e., if the Hall angle is non-
vanishing�.

Figure 3 shows the simulation results for �xy and M �inset
�b�� for applied fields up to B0=�0 / �2�a2�, where a is the
lattice spacing, comparable to the zero-temperature coher-
ence length �0. Both �xy and −M /T are expressed in units of
the 2D “quantum of thermoelectric conductance,” 2ekB /h.
We show data for T�TKT

0 ; below TKT
0 , our simulations en-

counter difficulties due to impaired vortex mobility. Fortu-
nately, T�TKT

0 is a regime of interest since the Nernst signal
persists well above Tc in the experiments of Wang, et al.1

The results presented here are in quantitative agreement with
earlier computations involving the 2D XY model with Lange-
vin dynamics:12 in particular, both models have the feature
that in the small magnetic field limit, �a� �xy and M diverge
logarithmically as B→0 for T�TKT and �b� they increase
linearly with B at small B when T�TKT.17 Moreover, both
�xy and M are detectable at temperatures as high as 2TKT in
our model, as well as in the 2D XY model.12 For TTKT, the
2D XY model predicts that �xy and M /T decay sharply as a
power law in temperature. Here, the magnetization decreases
even more rapidly at high temperatures: a calculation based

0

0.2

0.4

0.6

0.8

1

1.2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

ε-1

T

0

0.2

0.4

0.6

0.8

1

0.40.30.20.1

T

FIG. 2. Dielectric response of the dual Coulomb gas, computed
using Eq. �2�, and �inset� rescaled for finite-size effects �Ref. 16�.
We use an L	L torus with L=8,10,12,14,40 and core energy �c

=0.125. The transition temperature is the location where the res-
caled data intersect the line y=4T �dotted line�.
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on the dual solid-on-solid model shows that the magnetiza-
tion of single-flavor vortices decays exponentially as M =
−2T sin�B /B0�e−2T/
s, and our numerical results agree with
this expression. Although we have not succeeded in finding
similar expressions for �xy, our numerics indicate that �xy
also decays in this fashion at high temperatures and closely
tracks −M /T.

Vortex core energy dependence: The core energy depen-
dence of �xy and −M /T are shown in Fig. 3 �inset �a�� at T
=2.5TKT

0 . So long as �c” T, both are found to increase with
�c. At this temperature, �xy and −M /T track each other
closely. With increasing core energy, �xy and −M /T rise from
near zero at �c=0 to O�1� at �c=10TKT

0 , showing that the core
energy has a dramatic impact on both of these quantities in
this regime. The dominant effect of �c is to enhance local
superconducting correlations at short distances by increasing
the cost of vortex fluctuations. It enters directly in setting the
“work function” for removing a vortex from the system,
which is proportional to the magnetization. For �cT, −M
��c since more vortices are expelled near the boundaries in
this limit. We have observed this in our simulations. The
vortex-free boundary layer grows with �c, and when it be-
comes comparable to the thickness of the sample this causes
strong finite-size effects. Thus, we have not been able to
reliably determine the bulk behavior for large values of the
vortex core energy �c. We expect �xy to saturate at a finite
value in this limit; when all thermally generated vortex fluc-
tuations are suppressed, the remaining field-induced vortices
respond to the thermal gradient in a way that is independent
of the magnitude of �c.

Dependence on the number of vortex flavors: Several
theories of cuprates predict additional degrees of freedom
associated with vortices that endows them with a flavor

index.18,19 Such an extension is readily incorporated in our
formalism; the Gauss law is now � ·e=2���=1

Nv ni�, where �
is the flavor index. Our data show a systematic dependence
on the number of internal flavors. We find that both �M� and
�xy of single-flavor vortices �solid curves in Fig. 3� are sys-
tematically larger than that of vortices with two internal fla-
vors �dotted lines�. With multiple vortex species, there is
additional configurational entropy associated with the inter-
nal degree of freedom. Therefore, the free-energy cost of
introducing a vortex into the sample is lower, and the system
becomes less diamagnetic. It is more difficult to understand,
however, why �xy decreases as the number of species is in-
creased. In phenomenological discussions, the transport co-
efficient �xy is usually identified with the vortex entropy.20

Therefore, one may naively expect �xy to increase with the
number of internal vortex flavors. Moreover, �xy is equiva-
lent to the vortex thermopower, and if we neglected the loga-
rithmic interactions between vortices, the thermopower is
simply the entropy per particle �see below�, which increases
linearly with the number of internal states associated with
such particles. Our numerical results however are in sharp
contrast to such expectations. Instead, our results, which
have the opposite trend, point toward a scenario that is far
more complicated than an ideal gas approximation.

Perhaps the most striking feature of our data is the fact
that �xy and −M /T closely track each other. In particular, at
high temperatures, our results obey the relation �xy =
−cM /T, where c1, and is difficult to determine accurately
due to noise at large temperatures. Recently, it was shown
analytically in Ref. 12 that for the 2D XY Hamiltonian with
overdamped dynamics, c=1 /2 at high temperatures. Further-
more, one obtains the same relation for Gaussian supercon-
ducting fluctuations.21 Here, we have shown that this relation
is even more robust since it hardly depends on the variation
in the core energy and the number of distinct vortex species
so long as �c is not much greater than T. This relationship is
indicative of a deep underlying principle that seems to hold
true over a broad range of parameters.

Discussion: Thus far, we have focused on the Nernst ef-
fect due to vortices interacting with a logarithmic Coulomb
interaction. As a point of comparison, we now derive the
Nernst effect of a noninteracting ideal gas of vortices. For
this case, we will show rigorously that �xy is equal to the
thermodynamic entropy per vortex. Then, we will introduce
interactions through a virial expansion to show the devia-
tions from this result for interacting vortices.

As mentioned above, the transverse thermoelectric con-
ductivity �xy maps under duality to the thermopower of the
vortices, i.e., to the dual electric field created by the vortices
in response to an applied temperature gradient

�xy = 
s
0� ex

�xT
�

j=0
,

where measurement is carried out under open-circuit bound-
ary conditions for the vortices, j=0.

Consider noninteracting particles, which can be bosonic,
fermionic, or distinguishable �the result will be independent
of particle statistics�, in a system with Galilean invariance so
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FIG. 3. �Color online� �xy for a system of single-flavor �solid
lines� and double-flavor �dotted lines� vortices on a 20	15 cylin-
der, with core energy �c=0.5TKT

0 . Temperatures shown are 1.0 �top-
most 2 curves�, 1.25, 1.5, and 2.0 TKT

0 �bottom two curves�. Inset
�a�: Core energy dependence of �xy �solid lines� and −M /T �dashed
lines� in units of 2ekB /h for single-flavor vortices, at T=2.5TKT

0 and
B=0.7B0, showing a marked increase in both quantities with core
energy. Inset �b�: Diamagnetism −M /T curves for the same tem-
peratures as the main figure. �Units of 2ekB /h are used on the ver-
tical axes of both insets.�
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that the energy of a particle with momentum k is �k
=k2 /2m. The Boltzmann equation for the particle distribu-
tion g=g�r ,k , t� is ṙ ·�rg=−�g−g0� /�, where g0 is the par-
ticle distribution in equilibrium and � is a relaxation time. In
the Boltzmann equation, we have assumed that no external
forces are present �however, gradients in chemical potential
and temperature are present�. Then, the vortex current is

j�r� =� ddk

�2��dvkg�k,r�

= −
2�

md
�r�� ddk

�2��d

k2

2m
g�k,r��

= −
2�

md
�r�
E�r�� ,

where 
E is the energy density of the vortices. Note that,
independently of the particle statistics, the energy density of
an ideal gas is proportional to the pressure P. Therefore,
open-circuit boundary conditions are equivalent to the re-
quirement that the pressure in the system be uniform, �P=.
Therefore,

�xy = − � ��

�T
�

j=0
= − � ��

�T
�

P,N
= � �S

�N
�

P,T
, �7�

where S is the entropy, � the vortex chemical potential, N the
vortex number, and where in the last line we have used a
Maxwell relation. Thus, �xy of an ideal gas of vortices is a
measurement of entropy per vortex.

Next, we consider the leading correction to �xy due to
pairwise interactions among the particles. Assuming that the
particles are classical and indistinguishable the interactions
can be treated perturbatively with a virial expansion. From
the Boltzmann equation above, it is clear that the open-
circuit boundary conditions on the particles amount to a con-
straint of uniform kinetic energy density. This in turn implies

that instead of holding the pressure constant as in the case of
the ideal gas, we must require quantity P−n2TB2�T� to re-
main constant, where B2 is the second virial coefficient of the
system. Therefore,

�xy = − � ��

�T
�

P−n2TB2�T�,N
. �8�

In the dilute limit where the interactions are very weak, i.e.,
when B2� P / �n2T�,

�xy = � �S

�N
�

P,T
− n

�

�T
�TB2� . �9�

Thus, when B2�0, which is true in the case of repulsive
interactions, we see that �xy decreases in magnitude and is
no longer simply identified with the entropy per particle.
Indeed, our numerical calculations strongly suggest that in-
teractions between vortices play an important role in deter-
mining the temperature dependence of �xy and invalidate a
simple identification of �xy as the vortex transport entropy.

In conclusion, we have presented a method to study the
thermodynamic and transport properties of 2D vortex liq-
uids. This method enables us to directly observe the effect of
modifying the core energy and the number of vortex species
on diamagnetism and Nernst effect. We have found that both
quantities persist well above TKT and �xy closely tracks
−M /T when TKT�T�” �c. We have provided a detailed analy-
sis of the Nernst effect of a vortex liquid that deals directly
with vortex variables. The method presented here can be
generalized to study thermal transport of vortex liquids in
three dimensions �3D� and can be extended to study quantum
phase fluctuations.
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